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The first part of this work will present numerical results for both the path length
distribution and the longest path in random discrete intervals of multi-dimensional Cube
Space and Minkowski Space. Analytic formulae exist, but it will be shown that only
the occurence of short paths can be predicted accurately. However, the longest path
can be predicted with reasonable accuracy using either a greedy algorithm or with the
knowledge of the scale length Lscale = N1/D.
The second part will generalise the setting of the first to one where edges are only present
with a probability p < 1. Analytic formulae give a very poor estimate of the path length
distribution, but it will be shown that results for the longest path can be reproduced by
introducing a modified scale length L′

scale = (Np)1/D. The work will conclude with a
proposal of how the existing analytic formulae could be modified empirically to reproduce
numerical results.
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Preface

I’d like to use a couple of lines to put this work into context.
This project was carried out over a period of three months as the final project of my
MSc programme at Imperial College London. Naturally in such a short time, it was
not possible to tackle the problem in its entirety and the reader will find themselves on
several occasions rightfully asking: “Why was this or that not done?” I will try and
highlight some of these shortcomings in the final chapter so that others may pick up the
ideas for future work.
As a programming language for this work I chose Python. Using C++ or others would
have allowed for faster simulations and hence bigger networks, but Python is remarkably
accessible, so that, despite my almost non-existent experience with it, it was certainly
the most efficient choice. I decided to focus on having working code in order to do
simulations rather than making it as fast as possible, and Python seemed ideal for this.
I’d like to point out that while I had some examples to work by all code used in this
work was written by me, meaning that not the entire three months were available to
produce actual results.
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1. Introduction

In broad terms, a network (or graph) is just a collection of points that are in some
way connected. The points are referred to as vertices or nodes and the connections as
edges. This concept can be applied to a multitude of problems and has indeed become an
important tool in a variety of research fields. The most prominent example of a network is
probably the internet, which is both an information network and a technological network
and has in turn become a host for other networks. To give an example of the latter and
of what the study of networks can be used for, take a look at figure 1.1, which is a
visualisation of the author’s Facebook network. The vertices represent all the author’s
contacts and the edges represent a Facebook friendship between two contacts. Clearly
there are some groups that are highly interconnected, called communities. Community
detection in networks is still being investigated very actively [13, 29, 12]. To understand
why, take the two highlighted communities in figure 1.1. One represents the author’s
high school friendships, the other represents connections made during undergraduate
studies. From the fact that there are virtually no shared contacts between the two
communitites it can be inferred that the author went to a college or university relatively
far from home, or at least one where few of his friends chose to go. Clearly there is
information contained in the network that can be retrieved by such an analysis. This
is not directly relevant to this particular work, but it highlights one important factor of
the motivation behind network studies: A network is more than the sum of its parts.

Figure 1.1.: The author’s Facebook network with clearly visible community
structure, for example connections from high school (top) or undergraduate
studies (bottom). These communities show a high level of interconnectedness.
Graphic generated using WolframAlpha (www.wolframalpha.com: “facebook
report”)

1

www.wolframalpha.com


INTRODUCTION

Figure 1.2.: All possible paths from bottom left to top right corner of a square
for N = 5 and N = 50 points. One point connects to the next only if both
coordinates increase in the step.

The study of social networks has a comparatively long history [35] and has become part
of pop culture in the form of the six degrees of separation. The term stems from a 1990
play by John Guare [16, 27] and subsequent film and refers to the idea that even in large
networks any two people are connected via at most 5 other people. This notion is also
found as small world network in the literature following a paper by Milgram [24].
Other important fields that use a network approach include biology, for example food-
chains [22] and more recently brain simulations1 [14], and of course Physics, ranging
from Solid State Physics [1] to Particle Physics [26].
What this project sets out to do is, in simple terms, to find all possible paths across the
diagonal of a square, when one can only step to certain points along the way. This is
illustrated in figure 1.2. A number of points are scattered randomly in the square with
bottom left and top right point fixed. Now one starts in the bottom left corner and in
each step advances to a point that has higher coordinates in both directions. For N = 5
there are only very few possible ways to reach the top right corner, but for N = 50 it
is already hard to count them manually. The number of possible paths does of course
depend on the relative placement of the points.
This concept will be generalised to higher dimensions and special attention will be paid
to the longest path, which is of significance in quantum gravity (see section 2.4). It will
be tested if the longest path can be approximated by a greedy algorithm.
In a next step it will be investigated how the situation changes when each possible edge
is only present with a certain probability p < 1. This structure is found in citation
networks [28, 6], for example. Imagine an academic paper in a given field, meaning in a
given set of papers. If all papers that appeared earlier in time are place in a volume, for
example a cone, then the paper at the top of that cone will be connected to some other
papers, but certainly not all of them.

1The Human Brain Project (www.humanbrainproject.eu)
Blue Brain Project (http://bluebrain.epfl.ch/)
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2. Fundamentals

2.1. Network Properties

This section will go into a bit more mathematical detail on networks, called graphs, and
introduce some basic properties.
A graph G is an ordered pair G = (V,E) of a set of vertices V and set of edges E [2]. The
elements of E are two-subsets of V , meaning that every edge represents a connection of
exactly two vertices. That pair of vertices can either be unordered, giving an undirected
graph, or ordered, defining a direction and thus giving a directed graph (or digraph) [27].
Additionally, edges can carry weights, for example the Euclidean distance between the
two vertices that is explained in section 2.2. The number of vertices in a graph is called
its order |V | [9], which is not to be confused with the order also defined in section 2.2.
The following will list a number of concepts that are not all directly relevant to this
work, but are useful for a better understanding of networks in general. They can be
found in any textbook about networks or graph theory, from the more accessible such
as Newman [27] to the more mathematical, for example Harary [17] or Diestel [9].

Path/Chain
A path, sometimes also called a chain, is a sequence of consecutively adjacent
vertices, where adjacent means connected by an edge. The length of a path is the
number of edges in the path. In general a path can traverse any edge and vertex
multiple times. The path length distribution is just the number of paths of length
n as a function of the path length n.

Adjacency matrix
The adjacency matrix is a |V | × |V | matrix A whose entries are

Aij =

{
1 if (i, j) ∈ E

0 else
(2.1)

where (i, j) can be defined as a connection from i to j or the other way round.
Weighted edges can of course have other entries than just 0 and 1. An adjacency
matrix has an empty diagonal if there are no self-edges, edges to and from the same
vertex. Undirected networks have a symmetric adjacency matrix, while directed
networks generally don’t. The format in which a network is saved on a computer
will usually resemble an adjacency matrix.

Degree
The degree of a vertex is the number of edges that are connected to it. For directed
graphs a distinction can be made between in-degree and out-degree. Similar to the
path length distribution and much more commonly used is the degree distribution.
The latter will play no role in this work, but it might be of interest how the two
are related.
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FUNDAMENTALS 2.2. BOX SPACES AND INTERVALS

2.2. Box Spaces and Intervals

The basis for a box-space is a measure space, which is just any space with a defined
measure µ [36]. While there are numerous examples, the most intuitive one is the
Euclidean Space with the Euclidean Distance as a measure [8]:

µ(x, y) =

√∑
i∈D

(xi − yi)2 (2.2)

This is what will be used in this work, because both Cube Space and Minkowski Space
– the two will be introduced shortly – can be described as a Euclidean Space.
Now the goal is to only have a discrete set of connected points. Which point may connect
to which is defined by a partial order ≺ [4]. Why not a “full” order? Because not all
points need to be related. An example will be given with the definitions of the orders in
the two spaces. Applying such a partial order to a measure space M allows one to define
an interval 〈x, y〉 = {z ∈ M |x � z � y}. All graphs analysed in this work are intervals
in either Cube Space or Minkowski Space. A box-space is just such an interval that fulfils
µ〈x, y〉 = µ(x, y) = 1. Bollobás & Brightwell [4] additionally demand that the measure
space be homogeneous, but the Euclidean Space is, so this requirement shall be of no
concern.

2.2.1. Cube Space

The Cube Space is simply a D-dimensional cube with edge length 1. This shape follows
directly from the order relation, which is [4]:

x ≺ y ⇐⇒ xi < yi ∀ i ∈ D ∀x, y ∈ RD (2.3)

This just means that x is smaller than y in terms of the order ≺ if and only if all
components of x are smaller than the corresponding component of y. Two points are
not related if they have both smaller and larger components than their counterpart.
Hence it’s a partial order. Now given a point 0 = (0, 0, ..., 0) and a point 1 = (1, 1, ..., 1)
it is easy to understand that all points in the interval 〈0, 1〉 must lie within a cube of
edge length 1. This interval is the Cube Space used for this work. Note that it’s not
a box-space as µ〈0, 1〉 =

√
D, but it can of course be normalised if necessary. It was

decided to connect points backwards, meaning 1 is the starting point and each point
connects to all points of lower order.

2.2.2. Minkowski Space

The Minkowski Space can be thought of as two intersecting cones. Again this is a direct
consequence of the order for this space [4]:

x ≺ y ⇐⇒ (x0 − y0)
2 −

D∑
i=1

(xi − yi)
2 ≥ 0 ∧ x0 < y0 ∀x, y ∈ R× RD−1 (2.4)

This means two points can only be connected if they lie within each others lightcones
– if their spatial distance is smaller than their temporal distance (for convenience the

4



FUNDAMENTALS 2.3. DIRECTED ACYCLIC GRAPHS AND COMPLETENESS

lightspeed was chosen to be c = 1). Such points are said to be causally connected [18].
Now take the points 0 = (0, 0, ..., 0) and 1 = (1, 0, ..., 0), whose interval 〈0, 1〉 will then
certainly contain all the points that are in the forward lightcone of the one and in the
backward lightcone of the other. This interval is already a box-space and will be used
in this work referred to as Minkowski Space. Again connections were made backwards,
so that 1 is the starting point and every point connects to all points in its backward
lightcone.

t

Figure 2.1.: Illustration of D = 3
Minkowski Space comprised of two intersect-
ing lightcones

Quite obviously, both connection rules will
result in a directed graph without loops
(see next section). In fact, the two spaces
are identical in two dimensions, which will
be shown in chapter 3. In spite of that
fact, results will always be presented for
both spaces to check that the data is not
faulty. One more important quantity has
to be introduced: The set of points a given
point x directly connects to, which will be
denoted as Ω(x). Note that Ω does not
include the points x receives connections
from, neither does it represent all points
it is causally connected to – a causal con-
nection can exist via intermediate points.
For complete intervals this distinction is
irrelevant, but for incomplete graphs it is
of great importance.

2.3. Directed Acyclic Graphs and

Completeness

A cycle or loop in directed graphs is a path that contains at least one vertex twice [34],
and a directed graph not containing any such cycles is called a directed acyclic graph,
often abbreviated as DAG. All networks analysed in this work are DAGs, as a necessary
consequence of the order relation under which they are created.
A complete graph is usually defined as one in which there is an edge connecting each
pair of vertices [15], but this definition is not very useful for the type of work that will
be presented in this report. Instead, whenever this text talks about complete graphs
or complete intervals, it will refer to one that contains all edges allowed by the order
relations defined in the previous section, which is the same as transitive completeness
[27]. All others will be called incomplete graphs. Note that in an undirected graph of N
vertices there will be exactly 1

2N(N − 1) edges if the graph is complete. For the kind
of graphs used in this work a prediction of the exact number of edges is generally not
possible, because it depends on the placement of the vertices, which is chosen randomly.

5



FUNDAMENTALS 2.4. LONGEST PATH AND GREEDY PATH

2.4. Longest Path and Greedy Path

Figure 2.2.: D = 2 Cube Space
with two longest paths of length 2

The concept of the longest path L is very simple in
principle: It is the path in the network that con-
tains the highest number of edges or vertices. The
longest path need not be unique, as shown in fig-
ure 2.2. For undirected graphs or directed graphs
containing cycles the additional limitation has to
be imposed that either each edge or each vertex
may be passed only once, and the latter is most
commonly used definition [27, 9]. Otherwise an in-
finitely long path could be found. In finite directed
acyclic graphs, however, – the ones this work is
concerned with – there will automatically be a fi-
nite longest path. Finding the longest path in an
undirected graph can generally not be done in poly-
nomial time [31], for DAGs on the other hand it is
possible [32].
The longest path is of significance for quantum
gravity, specifically in discrete spacetimes such as
the aforementioned Minkowski Space. Myrheim
[25] conjectured that the longest path approaches the geodesic of the corresponding
continuous spacetime in the limit ρ → ∞, a proof of which exists for flat spacetimes by
Brightwell & Gregory [5]. Numerical work for flat spacetimes can be found for example
with Rideout & Wallden [30] or Thompson [33], for curved spacetimes with Ilie et al.
[19].
Most relevant for this project is the work of Bollobás & Brightwell [4], who estab-
lished that in the limit N → ∞ the longest path L is proportional to the scale length
Lscale = N1/D and derived bounds on the proportionality constant mX , called the max-
imal chain constant. The index X is either CuD for the D-dimensional Cube Space or
MiD for Minkowski Space. As these bounds will be used later in this work, they are
given here in detail. The upper bounds, also called the chain constants cX , are:

Cube Space: cCuD
= e (2.5)

Minkowski Space: cMiD = e
21−1/D

(
Γ(D + 1)

)1/D
D

(2.6)

The lower bounds follow from the upper bounds, so that:

cX ≥ mX ≥ cXD

e
(
Γ(D + 1)

)1/D
Γ(1 + 1/D)

(2.7)

It will be tested if these bounds are only valid in the large N limit or if they extend to
much smaller N .

The greedy path G is a path that starts at a given point and always proceeds to the
point that is closest in terms of a measure µ [3]. For this work the measure will simply
be the euclidian distance. The path ends of course when it arrives at a point with no
outgoing connections, a sink.
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FUNDAMENTALS 2.4. LONGEST PATH AND GREEDY PATH

The greedy path will only be relevant for the sections concerned with complete graphs,
since there would otherwise be multiple possible starting points, or sources. For a com-
plete interval the greedy path will always connect the two end points, so that on average
it should be irrelevant which one is assigned as the starting point. Note however that
for a single network it can well make a difference.
It is possible that the greedy path is a good approximation of the longest path. Fig-
ure 2.3 shows two dimensional Minkowski Spaces with increasing N , comparing the top
to bottom greedy path with a longest path. Evidently both approximate the diagonal,
which is the geodesic in this case, quite well, so the greedy path could be a good predictor
of the longest path length. In general greedy algorithms do not give an optimal solution
for a given problem [7], but the advantage of such algorithms is that they are extremely
simple and fast. Karger et al. [20] show that for undirected dense networks a greedy
algorithm can find the longest path. This work will investigate a possible relationship
between greedy path and longest path in the given spaces.

N = 50 N = 100

N = 200 N = 1000

Figure 2.3.: Top-to-bottom greedy path (blue or light grey) and one longest
path (red or dark grey) in D = 2 Minkowski Space with N = 50, 100, 200, 1000.
Both approximate the diagonal, also the geodesic in this case, increasingly well.
Hence the greedy path could be a good approximation of the longest path.
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3. Analytic Groundwork

This chapter will introduce analytic formulae that give the path length distribution –
and consequently the longest path – for random intervals in the aforementioned spaces.
The following two sections are adapted from an unpublished work of T.S. Evans1.

Take an interval from 0 to x with all possible edges present, meaning Ω(x) = {y | 0 ≺
y ≺ x}. The number of paths of length n in that interval will then equal the number
of paths of length n − 1 in the interval from 0 to x′, summed over all points x′ in the
interval Ω(x):

Cn(x) =
∑

x′∈Ω(x)

Cn−1(x
′) (3.1)

To find an analytic formula for Cn(x) from this recursion relation, one approach is to
employ a mean field approximation, i.e. to assume a constant point density, and to
transfer equations to continuous space. A solution can be found for both Cube and
Minkowski Space that solves the resulting integral and also ensures C1(x) = 1, which is
the direct connection between 0 and x. Two things should be noted: If equation (3.1)
is expressed as a continuous integral, integrating over Ω(x) and V (x) has the same
meaning. And, more importantly, the approximation should be strictly true in the limit
N → ∞. To test the validity of the formulae established in the following two sections
for finite N is part of this work.

3.1. Cube Space

Assuming the number of points N(x) in the interval is large and the points are uniformly
distributed, it is possible to integrate over the entire volume between points 0 and
x and incorporate the constant2 point density ρ = N(x)/V (x) into the expression.
Equation (3.1) can then be written as:

Cn(x) =

∫
Ω(x)

dx′ ρ · Cn−1(x
′) (3.2)

where 0, x, x′ ∈ RD. Then take the ansatz

Cn(x) =
(N(x))n−1

((n− 1)!)D
=

(ρV (x))n−1

((n− 1)!)D
(3.3)

which evidently fulfils C1(x) = 1.

1My supervisor’s work will not be cited, as it is very much work in progress.
2Generally it need not be constant, but in the simulation point coordinates will be taken from a uniform
distribution, so the assumption is justified
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ANALYTIC GROUNDWORK 3.1. CUBE SPACE

The recursion relation (3.2) then becomes

Cn+1(x) =

∫
Ω(x)

dx′ ρ · (ρV (x′))n−1

((n− 1)!)D
(3.4)

= ρn
D∏
i=1

 xi∫
0

dx′i
(x′i)

n−1

(n− 1)!


= ρn

D∏
i=1

(
xni

n(n− 1)!

)

= ρn
D∏
i=1

xni
n!

=
(ρV (x))n

(n!)D
=

(N(x))n

(n!)D
(3.5)

as required. The first step makes use of the fact that in Cube Space V (x) =
∏D

i=1 xi.
Equation (3.3) is one of the equations the simulation data will be tested against. The
next step is to find the longest path L from the equation. For finite N there is no reason
to assume that there is exactly one longest path, instead take that number to be Nmax.
Then

Nmax = CL(x) =
(N(x))L−1

((L− 1)!)D
(3.6)

To get an estimate of the longest path imagine one were to take the average of infinitely
many random DAGs with N points. n would then become a continuous variable and it
would be reasonable to take the average longest path where CL(x) = 1, so that:

1 =

[
(N(x))1/D

]L−1

Γ(L)
(3.7)

Γ(L) = (Lscale)
L−1 (3.8)

In this approximation L only depends on a single variable, the scale length Lscale = N1/D.
One can make use of the Stirling formula [10] to solve for L:

L ln(L)− L− 1

2
ln

(
L

2π

)
+O(L−1) ≈ (L− 1) ln(Lscale) (3.9)

Now keep only the terms of orders O (L ln(L)), O(L) and take L to be sufficiently large
so that L− 1 ≈ L. Then equation (3.9) reduces to:

L ≈ eLscale (3.10)

or more accurately:

L ≈ eLscale −
1

2
ln

(
2πLscale

e

)
(3.11)

For a derivation of the correction in equation (3.11) see appendix A.13. Interestingly,
the derived slope is in first approximation, which is only strictly valid for N → ∞, the
same as the upper bound introduced in section 2.4.

3Not part of Evans’ work
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ANALYTIC GROUNDWORK 3.2. MINKOWSKI SPACE

3.2. Minkowski Space

The approach for Minkowski Space is very similar to the one for Cube Space, indeed the
recursion relation is the same:

Cn(x) =

∫
Ω(x)

dx′ ρ · Cn−1(x
′) (3.12)

only that here x, x′ ∈ R×RD−1, meaning that the first component is a time x0 = τ and
the d = D − 1 spatial components form a d-dimensional spherical subspace. Hence one
must integrate over time and for each time integrate over the subspace. It is useful to
remember that for spherical symmetry in any dimension d [11]:

Vd(r) =

∫
dr Sd · rd−1 (3.13)

where Sd is the unit surface in a d-dimensional space. Note that in the literature one often
finds the index being the dimension of the surface itself [11] rather than the dimension
of the space it resides in. For example, a circle would then have dimension 1, while in
this work it will be 2.
Rewriting equation (3.12) with separate time and space integrals:

Cn(x) =

∫
Ωτ (x),Ω(t′)

dt′dr′ Sd · (r′)d−1 · ρ · Cn−1(x
′) (3.14)

where Ωτ (x) is the time interval and Ω(t′) the subspace for each time t′. In most cases
it is convenient to just choose Ωτ (x) = [0, τ ].
To find an ansatz for Cn(x) first note that for fixed speed of light c = 1 the volume of
the space is proportional to τD. Similar to the Cube Space assume that:

Cn(x) ∝ (ρV )n−1 ∝
(
ρτD

)n−1
(3.15)

=⇒ Cn(x) = An(D)
(
ρτD

)n−1
(3.16)

An(D) is a proportionality constant that should only depend on n and D – as it does
for the Cube Space. The idea is now to plug this ansatz into equation (3.14) and get
a recursion relation for An(D). Together with the condition that A1(D) = 1, which is
dictated by the need for C1(x) = 1, one arrives at an expression for An(D) and hence
for Cn(x) in Minkowski Space.
The derivation is rather lengthy, so only the result is given here, which is:

Cn(x) =

(
SdΓ(d)ρτ

D

2D

)n−1
nΓ ((D/2) + 1)

Γ (D(n− 1)/2 + 1) Γ(Dn/2 + 1)
(3.17)

For simulation purposes it is more useful to have N as a variable:

N(x) =

∫
Ω(x)

dx′ ρ =

∫
Ωτ (x),Ω(t′)

dt′dr′ ρ · Sd · (r′)d−1

= 2ρSd

τ/2∫
0

dt′
t′∫

0

dr′ (r′)d−1

N(x) = ρτD
Sd

2dD(D − 1)
(3.18)

11



ANALYTIC GROUNDWORK 3.3. INCOMPLETE GRAPHS

Equation (3.17) then becomes:

Cn(x) =

(
N(x)Γ(D + 1)

2

)n−1 Γ(D/2)

Γ (D(n− 1)/2 + 1) Γ(Dn/2)
(3.19)

This is the equation data from Minkowski Space simulations will be compared to. As
mentioned in section 2.2, the distributions for Cube Space and Minkowski Space should
be the same in two dimensions, and indeed equation (3.3) and equation (3.19) are iden-
tical for D = 2.
Equation (3.19) can also be found with Myrheim and Meyer [25, 23] and can be used
to find an expression for the longest path L. Take the logarithm and make use of the
Stirling approximation:

ln
(
CL(x)

)
= (L− 1) ln

(
N(x)Γ(D + 1)

2

)
+ ln

(
Γ

(
D

2

))
− ln

(
Γ

(
D(L− 1)

2
+ 1

))
− ln

(
Γ

(
DL

2

))
(3.20)

≈ L ln

(
N(x)Γ(D + 1)

2

)
−DL ln

(
DL

2

)
+DL (3.21)

where only terms of orders O(L), O(L ln(L)) and O(L ln(N)) were kept. Then:

ln
(
CL(x)

)
≈ DL ln

((
N(x)

)1/D (Γ(D + 1)

2

)1/D 2e

DL

)
(3.22)

≈ DL ln

(
cCo(D)Lscale

L

)
(3.23)

where Lscale = N1/D and cCo(D) is the chain constant for the Minkowski Space as
introduced by Bollobás & Brightwell [4]. Now again make the assumption that CL(x) = 1
and it follows immediately that.

L ≈ cCo(D) Lscale (3.24)

So, as seen before for Cube Space, in the limit of large N the longest path should
scale linearly with Lscale by a proportionality constant that Bollobás & Brightwell [4]
established is the upper bound on their maximal chain constant (see section 2.4).

3.3. Incomplete Graphs

One question this work will seek to answer is what happens if edges are only present
with a certain probability. The concept is the same as outlined before, but now point
x is not automatically connected to all points in 〈0, x〉. Instead, for each x′ ∈ 〈0, x〉
a connection will only be present with probability p < 1. J. Clough4 conjectures that
in such a situation it is sufficient to take the established formulae and just replace N
with Np, which is reasonable, because the number of points a given point connects to
should be proportional to N . For example, the origin will always connect to (or receive a
connection from) all other points, while in Cube Space a point in the centre of the interval

4Special thanks to my colleague James Clough for this suggestion
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ANALYTIC GROUNDWORK 3.3. INCOMPLETE GRAPHS

will be able to connect to 2−D of all points on average. Including an edge probability
this proportionality should simply be in relation to Np instead of N . Accordingly, there
would be a new scale length Lscale = (Np)1/D and the path length distributions would
be given by:

Cube Space: Cn(x) =

(
pN(x)

)n−1(
(n− 1)!

)D (3.25)

Minkowski Space: Cn(x) =

(
pN(x) Γ(D + 1)

2

)n−1 Γ(D/2)

Γ (D(n− 1)/2 + 1) Γ(Dn/2)
(3.26)

Quite obviously, these equations fulfil the most basic requirement of being consistent
with the p = 1 case. Note however that these equations still predict exactly one path
of length 1, which seems very unrealistic, although it will of course depend on how one
defines a path in this new setting. One could only count those that actually connect the
bounds of the interval – which would by the way mean an average of p paths of length
1 – but for this work it was decided to count all existing paths in the interval.
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4. Methods & Algorithms

4.1. Path Length Distribution Algorithm

This section will delineate the algorithm used to determine the path length distribution
for a given DAG. Information about the latter was stored in a way that for each node
or vertex a list of nodes it connects to is provided. The steps were as follows:

1. Determine the order of each node. The order of a sink, i.e. a node with empty
connection list, was defined to be zero: o(x) = 0 ⇔ Ω(x) = {}, while the order
of any other node is one more than the highest order of the nodes it connects to:
o(x) = max(o(x′) |x′ ∈ Ω(x))+1. This process is similar to topological sorting [7],
with the difference that multiple nodes can have the same order in this case.

2. Looping through orders starting at 1, calculate the path length distribution for
all nodes of each order. For first order nodes, the path length distribution is
simply C1(x) = |Ω(x)| the magnitude of its Ω(x). For higher order nodes the
distribution is obtained via equation (3.1). The increasing order ensures that when
the distribution is to be computed for one node, the distributions for all nodes it
connects to are already available.

3. The final path length distribution is the sum of the distributions of the highest
order nodes. For complete intervals there is of course exactly one node with highest
order.

For too large N the path count becomes too high to be saved as integer value. To prevent
that from happening, everything was saved and computed in logarithms of base 10. It
is useful to remember that

log(a+ b) = log(a) + log
(
1 + 10log(b)−log(a)

)
(4.1)

The algorithm is generally faster the more sparse the networks become for a given N .
To give an estimate of its efficiency, the computation time for complete networks in two
dimensions is roughly proportional to a power of N : t ∝ N2.55 (timing analysis was
performed up to N = 2000)
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4.2. Measurement Statistics

Because this work deals with random networks, every simulation has to be repeated a
number of times to then average the results, and it was found that 500 is a reasonable
number of repititions. To quantify the quality of any statistical measurement, it is
necessary to provide an error, and the most common error measure is the standard
deviation of the measurement, which is defined as follows [37]:

σ =

√
ΣN
i=1(xi − x̄)2

N
(4.2)

where N is the number of data points and x̄ their arithmetic mean.
An important distinction has to be made here. Normally one measures a physical quan-
tity and wants to be able to say that the true value lies in an interval of ±1σ(, 2σ, 3σ, ...)
around the calculated mean with a probability of 68.27%(, 95.45%, 99.73%, ...) [21].
When counting paths in a random network, the count is always exact, and there is
no true value one should find for a given path length n. Instead, when averaging a large
number of simulations, one seeks to find the distribution all values for a path length n
follow. This will in good approximation be a normal distribution, and then the standard
deviation is a measure of the width of that distribution and will usually not become
smaller for an increasing number of data points.
All statements in this work will implicitly take the centre of said distribution as its
representative, so rather than the width of the distribution, one would like to have a
measure of the exactitude with which the position of the centre of the distribution is
known, which is characterised by the standard error of the measurement or standard
error of the mean [37]:

SE =

√
ΣN
i=1(xi − x̄)2

N
=

σ√
N

(4.3)

This is the error most figures in this work will provide. Note that there are multiple
names for these errors and the standard deviation can occasionally be found identified
simply as the standard error.
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5. Results: Complete Graphs

This chapter will present the results of a number of simulations that used the algorithm
outlined in section 4.1 to find the path length distribution and the longest path in a
random DAG. Only complete networks were analysed, meaning all allowed edges were
present with probability p = 1. The results for Cube Space and Minkowski Space turned
out to be very similar, so in most cases figures will be shown for one space and be made
available in the appendix for the other. Because this work consists of a relatively high
number of separate sections, it was decided to discuss results directly, so each part can
be self-contained, rather than letting the reader skim through large parts of the work to
find figures. A summary of the important findings will be given at the end.
A quick outline of this chapter:

Section 5.1 will evaluate how well actual data is predicted by the formulae derived in
chapter 3. The influence on the results of three parameters in particular will be
tested: The number of averaged runs, the number of points N and the dimension
of the space D.

Section 5.2 will test the validity of the formulae that predict the length of the longest
path L, especially for small Lscale. It will be investigated if the bounds from
section 2.4 apply in this limit. In the limit N → ∞ L is a linear function of Lscale

[4], so the same might be true for finite N .

Section 5.3 will repeat the measurements of section 5.2 for the greedy path. As this
should serve as a lower bound on L, a comparison will be made to values of the
lower bound introduced in section 2.4. The behaviour of the ratio of greedy path
length G to longest path length L for large N will be evaluated. It is known that
for some network types the greedy path can predict the longest path [20].
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RESULTS: COMPLETE GRAPHS 5.1. THE PATH LENGTH DISTRIBUTION

5.1. The Path Length Distribution

As established in chapter 3, equations (3.3) and (3.19) give an estimate for the path
length distribution, but were derived using a mean field approximation, so the first
question that needs to be answered is how well simulation data is represented by these
formulae.

Averaging an increasing Number of Runs

As with any experiment that deals with random inputs, it is imperative to take the av-
erage of a large enough number of measurements for any given quantity before findings
can be said to be reliable. An example measurement for the Cube Space with N = 100
in two dimensions averaged over 1000 runs is shown in figure 5.1. The errors already
indicate that there’s a significant discrepancy between the prediction and the actual
measurement, which has fewer long paths and fewer total paths than predicted. This
notion is reinforced by figure 5.2; even with a hundred times as many repititions, the
measured path length distribution does not change significantly. Note that the loga-
rithm of the distribution is displayed, so naturally small variations towards the long end
appear amplified. This was tested for a number of different starting parameters and
each time the number of averaged runs had little effect on the measured path length dis-
tribution, both in Cube Space and in Minkowski Space. In two dimensions Cube Space
and Minkowski Space should give the same results (see chapter 3) and that is indeed the
case. The corresponding figures for Minkowski Space are figures A.1 and A.2.

.

lo
g(

C
n)

Path Length n

Figure 5.1.: Path length distribution predicted by equation (3.3) (dotted) and
actual data in Cube Space with N = 100, D = 2, 1000 runs averaged on a log
scale. Error bars show standard error of measurement. The occurence of long
paths and the total number of paths is overestimated by the formula, but short
paths are predicted accurately.
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Path Length n

lo
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C n)

.
.

.

Figure 5.2.: Path length distribution predicted by equation (3.3) (dotted) and
actual data in Cube Space with N = 100, D = 2 on a log scale. Error bars are
omitted for better readability. Increasing the number of repititions from 1000
to 100000 (left to right) does not significantly change the measured path length
distribution.

Increasing the Number of Points N

Because equations (3.3) and (3.19) were derived from a mean field approximation, one
should expect that with increasing N the measurements and the predicted distributions
tend to be in better agreement. This could not be observed, as seen in figure 5.3,
which shows a comparison of data and predicted distribution in two-dimensional Cube
Space for N = 500, 1000, 2000. Instead, the measured distribution seems to follow
roughly the same curve compared to the formula regardless of N , which means that the
number of short paths (smaller than about half the maximum path length) is always
very accurately predicted, while long paths are evidently overestimated by the formulae.
For completeness the result for Minkowski Space is given in figure A.3, which is of course
identical to the one for Cube Space.
The discrepancy between data and prediction can not be assessed by eye, so to determine
whether increasing N results at least in a small improvement, one can look at the ratio
of data to predicted distribution. This was done in figure 5.4 for two-dimensional Cube
Space. Ideally all data should follow the displayed straight line, meaning a perfect fit,
and it appears that larger N do that a little bit better. This is an indicator that for
N → ∞ theory and data will coincide, but it would be useful to see the results for even
bigger N . Note also that the errors for short paths are extremely small, which means
there is virtually no variance among the single measurements. For completeness the
result for Minkowski Space is given in figure A.4.
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Figure 5.3.: Effect of increasingN (N = 500, 1000, 2000 left to right) comparing
prediction from equation (3.3) (dotted) and simulation data in Cube Space with
D = 2 from 500 repititions. Error bars show standard error of measurement.
Increase of N does not seem to bring prediction and data closer together.
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Figure 5.4.: Ratio of measured distributions to predicted distributions for N =
500, 1000, 2000 (left to right) in D = 2 Cube Space. Data is the same as in
figure 5.3 and should ideally follow straight dotted line. Higher N seem to be
match unity ratio a little better.
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Increasing the Dimension D

The previous measurement, increasing the number of points N , was repeated for differ-
ent dimensions. It was found that increasing the dimension D resulted in a much better
agreement of the data with the formula. Figures 5.5a and 5.5b show that in higher
dimensions D = 3, 4 of Cube Space the formula appears to predict the measured curves
quite well, certainly much better than in two dimensions (figure 5.3). This was not tested
for higher dimensions, because the path length distribution or rather the longest path
become much shorter, and one can’t infer too much information from only a handful of
data points to compare. So to produce figures of similar quality as the ones displayed,
larger N would have been necessary but could not be realised in reasonable time. Results
for Minkowski Space were almost identical to the ones in Cube Space (see figures A.3,
A.5a and A.5b).

The key point to take away from this section is that in both Cube Space and Minkowski
Space the formulae used to predict the path length distribution appear to overestimate
the number of long paths and the total number of paths. On the other hand the predic-
tion for short paths is very accurate. The degree of accuracy or inaccuracy depends on
the parameters used:
The first observation was that the number of simulations one takes the average of ap-
pears to be of little importance, as long as this number is sufficiently high (∼500) so
that variations inherent to random processes are suppressed. This was expected, but is
nevertheless reassuring in that it provides confidence for other observations.
Increasing the number of points N in the network had little influence on the quality
of the prediction. It could be shown that higher N fit the prediction slightly better,
but the improvement is small compared to the discrepancy between data and predicted
distributions. It is important to note that all tested N can still be considered small.
After all, the formulae describe the result of a mean field approximation. It is likely that
only for extremely large N the approximation delivers much better results. So the only
conclusion that can be drawn from the data is that predictions of the number of long
paths are poor in two dimensions for N up to 2000 and probably a little higher, while
short paths are predicted accurately.
For higher dimensions – specifically D = 3 and D = 4 were tested – predictions appar-
ently become increasingly accurate. It is not immediately clear why that should be the
case. The reason could be that for a given N the number of paths of length n decreases
with increasing D, both in Cube Space and Minkowski Space, and that the prediction
is just more accurate for shorter paths in absolute terms. It should be interesting to
see the behaviour for higher N and D and it is not unreasonable to think that then the
number of long paths would again be overestimated significantly.
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(a) D = 3
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(b) D = 4

Figure 5.5.: Reproduction of figure 5.3 with D = 3 and D = 4 instead of
D = 2. Evidently in higher dimensions predicted values (dotted) match data
more closely.
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5.2. The Longest Path

This section will present measured longest path lengths L as a function of Lscale =
N1/D. Because of limited time and resources, the maximum scale length used was
Lscale = 50, and that only in two dimensions, which is obviously a very small number.
The Stirling formula used to derive a proportionality between L and Lscale is only a
valid approximation for large numbers (relative error ∼ 5% at L = 20), so for most data
points recorded here its use is unjustified. Consequently, no well-grounded assumption
can be made about the behaviour of L(Lscale) in this regime. Only an indication is
given by the work of Bollobás & Brightwell, who prove that for N → ∞ the behaviour
is linear.
Figures 5.6a and 5.6b show L as a function of Lscale in Cube Space and Minkowski Space,
where two observations are most striking.
The first is that there appears to be a clear difference between dimensions, although one
would expect that for example Lscale = 10001/3 and Lscale = 1001/2 give the same result.
On the other hand, it was just established that especially for D = 2 the formulae poorly
predict the path length distribution and hence the longest path length.
The other is that for each dimension a linear dependence between L and Lscale emerges.
A closeup view of the lower left hand sections is given in figures A.6a and A.6b.

D Lower bound Slope Upper bound

2 1.596 1.918 ± 0.002 2.718
3 1.849 2.212 ± 0.004 2.718
4 1.994 2.325 ± 0.007 2.718
5 2.090 2.382 ± 0.007 2.718

(a) Cube Space

D Lower bound Slope Upper bound

2 1.596 1.920 ± 0.004 2.718
3 1.778 2.105 ± 0.006 2.614
4 1.855 2.121 ± 0.008 2.530
5 1.896 2.098 ± 0.007 2.466

(b) Minkowski Space

Table 5.1.: Measured slopes of L(Lscale) in Cube Space and Minkowski Space
along with bounds calculated from equation (2.7). Errors are 1σ standard
deviation. Evidently even in the low Lscale regime bounds remain valid.
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(a) Cube Space

(b) Minkowski Space

Figure 5.6.: Longest path length L as a function of Lscale in Cube Space and
Minkowski Space, data points from 500 run average. Error bars smaller than
symbols. L shows linear behaviour with slope c given in legend. Points should
ideally be on one curve, but there’s clearly a dimension dependence, at least for
small D.
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Table 5.1 lists the slopes for each dimension in the two spaces along with the upper and
lower bounds calculated from equation (2.7). Interestingly, the bounds that Bollobás &
Brightwell [4] established for the limit N → ∞ still hold in the low Lscale regime. It was
not possible to find an empiric formula that would allow one to estimate the slope for an
arbitrary dimension. However, note that for both spaces the slopes appear to approach
a limit (The decrease from D = 4 to D = 5 in Minkowski Space is not significant1).
Looking back to section 5.1 where it was found that with increasing dimension the path
length distribution also approaches a limit – the formula prediction in that case – it is
not unreasonable to expect slopes for higher dimensions to be very close to the one for
D = 5. Unfortunately this could not be tested, as for higher dimensions N must also be
increased to achieve at least moderately high Lscale.
To summarise, L is an approximately linear function of Lscale for Lscale ≤ 50 and prob-
ably higher, which had only been shown for infinitely large N [4]. The slope depends
on the dimension D, but high dimensions can be expected to have about the same slope
as D = 5. Bounds derived for the limit N → ∞ also hold in this regime. It is also
reassuring to find that Cube Space and Minkowski Space give almost identical results in
two dimensions, precisely what they should do as established in chapter 3. In terms of
applicability, knowing that L is a linear function of Lscale one can easily estimate L for
a given set of N and D.

1There are multiple definitions for a significant deviation, but a common one is to take the difference
of two values and the error of the difference. If the former is more than three times the latter, the
two points differ significantly, because the statistical probability for that to happen is < 0.3%. Note
here ∆ = 0.023 and δ(1σ) =

√
0.0082 + 0.0072 = 0.011 so that ∆ ≈ δ(2σ)
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5.3. The Greedy Path

This section will showcase the results of measurements of the greedy path. For a given
interval this was always taken from point 1 to point 0 rather than the other way round.
While for a single graph the direction can make a difference, on average it will not,
because the two spaces are symmetric. As a first step the simulations from section 5.2
for the longest path were repeated for the greedy path, meaning that the greedy path
length G was measured as a function of Lscale.
Figures 5.7a and 5.7b show that G presents linear behaviour like L, but with a smaller
slope, in both Cube Space and Minkowski Space. The fact that the slope is smaller than
for L is trivial, but there was no reason to expect linear behaviour in the first place.
Closeup views of the lower Lscale part of the figures are again available in the appendix
(figures A.7a and A.7b). The slopes determined from these measurements are listed
in table 5.2 together with the calculated lower bounds on L. The fact that these are
exclusively bigger than the values obtained in simulation poses the question if maybe
the lower bound on L at the same time serves as an upper bound on G. Recall that
Bollobás & Brightwell [4] used the concept of the greedy path to derive lower bounds
on L, so one might expect the slopes to match those bounds, but again the derivations
treat the N → ∞ limit and are therefore a poor benchmark for the measurements at
hand. It would have been surprising to find the values in close agreement. Interestingly,
the ratio of the slopes of G and L for each dimension is remarkably constant between
0.77 and 0.81. Indeed, with L and G both showing linear behaviour, examining their
ratio is the next logical step.

D Slope Bound

2 1.528 ± 0.003 1.596
3 1.706 ± 0.006 1.849
4 1.809 ± 0.009 1.994
5 1.881 ± 0.009 2.090

(a) Cube Space

D Slope Bound

2 1.537 ± 0.003 1.596
3 1.656 ± 0.004 1.778
4 1.677 ± 0.008 1.855
5 1.695 ± 0.008 1.896

(b) Minkowski Space

Table 5.2.: Measured slopes of G(Lscale) in Cube Space and Minkowski Space
along with bounds calculated from equation (2.7). Errors are 1σ standard
deviation. Evidently all slopes are smaller than the lower bound for L.
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Figure 5.7.: Greedy path length G as a function of Lscale in Cube Space and
Minkowski Space, data points from 500 run average. Error bars smaller than
symbols. G shows linear behaviour with slope c given in legend. Behaviour
almost identical to L, but with smaller slope.
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D a (Cube Space) a (Minkowski Space)

2 0.719 ± 0.008 0.730 ± 0.007
3 0.680 ± 0.012 0.701 ± 0.013
4 0.715 ± 0.010 0.731 ± 0.010
5 0.753 ± 0.013 0.766 ± 0.015

Table 5.3.: Estimates of the roughly constant ratio a of greedy path length G
and longest path length L for large N .

Unfortunately, just plotting G/L as a function of Lscale does not reveal much, because
most values of Lscale are too small. For completeness these figures can be found in the
appendix (figures A.8a and A.8b). It is more informative to display the ratio as a function
of N , which is done in figures 5.8a and 5.8b. For both Cube Space and Minkowski Space
the ratio of greedy path length to longest path length appears to approach a constant
value for large N that depends on the dimension D. To find that constant a curve fit
was performed with

f(N) = a+
b

ln(N + c)
, a, b, c fit parameters (5.1)

which was chosen by eye. A polynomial with negative powers was also tested, but gave
poorer results. The function is not meant to accurately describe the behaviour, only
to give an estimate of the seemingly constant ratio for larger N . It is undefined for
N = −c, but that is of little importance here, because the focus lies on the larger N
regime. The arbitrariness of the fit function will introduce an error that can outweigh
the statistical error of the fit. Nevertheless, only the latter is given in table 5.3, which
lists the constants a obtained from the fits.
Much like in the other experiments, the data for D = 2 behaves a bit ”out of the
ordinary”, while the curves for higher dimensions appear nicely ordered with a increasing
almost linearly with D. This can of course not be the case when going to even higher
dimensions, as the ratio cannot exceed unity. Instead, it is reasonable to assume that
the D = 5 case is a good approximation of the behaviour in higher dimensions, as seen
in earlier sections. Going back to figures A.8a and A.8b, which show the ratio G/L as
a function of Lscale instead of N , one could easily guess that for higher dimensions the
ratio roughly approaches a value of 0.75 for large Lscale, which is not too different from
the ratios of the slopes found earlier, ranging from 0.77 to 0.81
It should be noted that talking about ”large” N (or Lscale) is a bit misleading here,
because these values of N can still be considered small. It is just an assumption that the
data will keep following the trend observed in the figures. It might in fact seem trivial
to say it will tend towards a constant, after all for any finite N the ratio must be greater
than 0. But that does not necessarily mean it will be in the limit N → ∞.
The key finding of this section is that the ratio of G/L most likely approaches a constant
value for large N , which is about 0.75 for D ≥ 5. This could help to quickly estimate
L for a given network, as finding the greedy path takes little computational effort. This
had been shown for other types of networks before [20], but not for two particular cases
discussed here.
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Figure 5.8.: Ratio of greedy path length G to longest path length L as a func-
tion of N . Data from 500 averaged runs. Error bars show standard error of
measurement. Ratio appears to approach constant value a for large N .
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6. Results: Incomplete Graphs

The second part of the results addresses the subject of incomplete graphs. Random
networks were created in the same manner as before, but allowed edges were only inserted
with a probability p < 1. The algorithm to determine the path length distribution is
outlined in section 4.1. To the best of the author’s knowledge no similar work has been
undertaken.
Unlike before, for any interval 〈0, x〉 point x will generally not be the only source and 0
not be the only sink in that interval. As a consequence, the idea of a greedy path is not
well defined in this setting and it was decided to not investigate it here.
The results for Cube Space and Minkowski Space were again very similar, so only one of
the two will be shown were appropriate. This chapter will have the following structure:

Section 6.1 will investigate whether it is N and p as independent variables or only
their product Np that determines the path length distribution. To this end, a
normalisation will be introduced to the formulae for the path length distributions,
so that ultimately they’re only a function of Np. Equations (3.25) and (3.26)
predict that only Np is an independent variable.

Section 6.2 will try to determine if (Np)1/D serves as a modified scale length. The
longest path length L will be measured to see if it is a function of only (Np)1/D.
From the findings in chapter 5 it should be expected that there is some dependence
on D but that L is a linear function of L′

scale = (Np)1/D.

Section 6.3 will investigate the change of the path length distribution. From equa-
tions (3.25) and (3.26) it should be expected that for a given Np the combination
of p and N is irrelevant to the resulting distribution. However, chapter 5 already
showed that the formulae do not give an accurate description of the data for finite
N , so it would be suprising if it were different for incomplete graphs.
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6.1. Np as a single Variable

A necessary requirement for there to be a modified scale length is that rather than the
combination of p and N , only the product Np determines the path length distribution. If
the latter is the case, it must be possible to introduce a normalisation that will result in
a ”data collapse”, meaning that Np is the only independent variable and any choice of p
andN for a givenNp gives the same result. To achieve this, one modifies equations (3.25)
and (3.26) and plots the following as a function of the path length n:

for Cube Space: log
(
Cn(x)

)
+D · log

(
(n− 1)!

)
(6.1)

for Minkowski Space: log
(
Cn(x)

)
− log

(
Γ(D + 1)n−1Γ(D/2)

2n−1Γ
(
D(n− 1)/2

)
Γ(Dn/2)

)
(6.2)

which should in both cases be a straight line with slope log(Np). This was done in
figure 6.1, which shows data collapse for three different values of Np. For each Np a total
of 9 distributions were computed with D ∈ {2, 3, 4}, p ∈ {1.0, 0.5, 0.1} and N = Np/p.
The observed data collapse indicates that as hypothesised the only independent variable
is Np. There is some variation towards the upper end of the distribution, which is again
due to the fact that in the unnormalised distribution there are only very few paths (< 1
on average) of that length. While figure 6.1 is only a qualitative plot, one can readily
check that the slopes do match log(Np) quite accurately.
The plot for Minkowski Space, shown in figure A.9, looks almost identical and because of
the normalisation there should indeed be no difference at all between the two. It should
also be noted that for smaller path lengths the lines are not completely congruent, unlike
seen for p = 1. The reason for that is that for a complete graph there will always be
exactly one path of length 1, while for p < 1 there will likely be more than one, which
also mean there’s more room for variance among the single measurements. Note also
that equations (3.25) and (3.26) predict exactly one path of length 1 regardless of the
choice of N and p (as long as they are positive). This will be discussed in more detail
in section 6.3.
To summarise, it is possible to introduce a normalisation to equations (3.25) and (3.26),
so that for a given product Np data for all combinations of N , p and D approximately
follow a straight line with slope log(Np), which indicates that only Np is an independent
variable.
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Figure 6.1.: Plot of log(Cn(x)) + norm = (n− 1) log(Np) in Cube Space, data
from 1000 run average. 9 different distributions for each Np with D ∈ {2, 3, 4},
p ∈ {1.0, 0.5, 0.1} and N = Np/p. Error bars omitted for better readability.
Data collapse indicates that only the product Np is an independent variable.

6.2. A Modified Scale Length

This section aims to ascertain the validity of J. Clough’s suggestion, who speculates that
for incomplete graphs with edge probability p there is a scale length L′

scale = (Np)1/D,
which would be consistent with the scale length for p = 1. Now that Np appears to be
a single variable, it is necessary to establish with more confidence that there is indeed
such a modified scale length.
As a first step, the longest path length L was measured as a function of D for a number
of combinations N, p with Np = 100. This way it is possible to see again how much
difference the choice of N and p makes and if L is proportional to (Np)1/D. The result
is shown in figure 6.2 for Cube Space and in figure A.10 for Minkowski Space.
The data points for a given D seem to coincide quite well, although there is a rather
large variance for D = 2. This further indicates that combinations of N and p with the
same product Np give roughly the same result. A fit was performed on the averaged
data points with the function f(D) = c · (Np)1/D where c and Np are the fit parame-
ters. While there is clearly a 1/D dependence, the fit does not return the ideal value of
Np = 100. Looking back to section 5.2 this is not surprising – while L was found to be
a linear function of Lscale, there was still a dimension dependence. It is only reasonable
to expect the same for incomplete graphs.
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Figure 6.2.: Longest Path L as a function of D for different pairs of N ,p with
Np = 100 in Cube Space, data averaged over 500 runs. Error bars show stan-
dard error of measurement. Fit function c · (Np)1/D with c,Np variables. Fit
does not return Np = 100.

Up to this point it was found that any combination N, p for a given product Np will give
very similar results, a necessary requirement for (Np)1/D to be a scale length. Further-
more, L was found to exhibit a x1/D behaviour in D, a second necessary requirement.
However, x was significantly different from the given Np. Had that not been the case,
the hypothesis could have been reasonably accepted as true, but now one must make a
comparison to complete graphs. If L is a linear function in L′

scale = (Np)1/D as before,
it can be called a scale length.
Figure 6.3 shows L as a function of L′

scale. For a fixed range of N six groups of values
with D ∈ {2, 3, 4} and p ∈ {0.5, 0.1} were calculated. The data for D = 2 and p = 0.5
is notably different compared to the other sets, which is similar to what was observed
for complete graphs. The rest of the data appears to follow a roughly constant slope.
There is some variance among the sets, which is not statistically significant. A closeup
view of the lower section of figure 6.3 is given in figure A.12.
Evidently the behaviour of L(Lscale) is very similar for complete and incomplete graphs.
The averaged slopes of the four sets with D = 3, 4 are cCu = 2.333±0.035 in Cube Space
and cMi = 2.177± 0.034 in Minkowski Space (shown in figures A.11a and A.11b), which
is in good agreement with the slopes found in higher dimensions for complete graphs.
Consequently, L′

scale = (Np)1/D can be said to serve as a scale length for intervals in
Cube Space and Minkowski Space with dimension D ≥ 3 regardless of the choice of N
and p.
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Figure 6.3.: L as a function of the modified scale length L′
scale = (Np)1/D,

data averaged over 100 runs. Error bars show standard error of measurement.
Linear fit results given for each set, but line is not displayed. L exhibits linear
behaviour with small dependence on p, but roughly constant slope except for
D = 2.

6.3. Changes to the Path Length Distribution

In section 5.1 it was found that equations (3.3) and (3.19) overestimate the number of
long paths and the total number of paths in both Cube Space and Minkowski Space.
The prediction was poor in two dimensions but became increasingly accurate in higher
dimensions. There is no reason to expect a greater number of longer paths now for p < 1,
so it is likely that equations (3.25) and (3.26) will overestimate the number of long paths
as well.
As briefly mentioned before, in a complete interval there will always be exactly one path
of length 1, which leads to a good agreement of data and prediction for shorter path
lengths. However, in an incomplete one there are usually numerous sinks and sources,
so that it is possible and likely to find more than one path of length 1. Consequently,
if the distribution has the same shape as usual, one should expect shorter paths to be
underestimated by the formulae.
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Figure 6.4.: Path Length Distributions in two-dimensional Cube Space with
Np = 100, data averaged over 500 runs. Error bars show standard error of
measurement. For p < 1 equation (3.25) underestimates number of short paths,
but overestimates number of long paths, as seen for p = 1. The total number
of paths appears to increase slightly with N .

Figure 6.4 shows a selection of distributions with Np = 100 in two-dimensional Cube
Space. For comparison N = 100, p = 1.0 was included. Two things are immediately
obvious. As expected the number of short paths is underestimated by the formula, while
the number of long paths is overestimated. Secondly, the total number of paths increases
with N . While small, the increase is still significant with respect to the errors.
Knowing that increasing the dimension of the space led to a much better agreement of
the data with predicted values for complete graphs, it will be interesting to see if the
same is true for incomplete graphs.
The measurements of figure 6.4 were repeated with dimensions D = 3, 4, displayed in
figures 6.5a and 6.5b. As seen before, the formula predicts the distribution well for p = 1.
It appears as if there are now many more short paths than predicted compared to D = 2,
but note that there are far fewer paths overall when the dimension is increased. In fact,
the number of short paths is roughly one order of magnitude larger than predicted in all
three cases. An increase of the total number of paths can not be observed for the higher
dimensions. While it is still significant in the short path regime, the number of long
paths appears to decrease in comparison. The upper end of the distribution does not
approach the predicted one with increased D, as opposed to the p = 1 case. The results
are the same for Minkowski Space and are shown in figures A.13, A.14a and A.14b.
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Figure 6.5.: Reproduction of figure 6.4 with D = 3, 4, data averaged over 500
runs. Error bars show standard error of measurement. For p < 1 equation (3.25)
underestimates number of short paths, but overestimates number of long paths,
as seen for p = 1. The total number of paths appears to increase slightly with
N .
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Figure 6.6.: Comparison of measured and predicted (dotted) distributions in
three-dimensional Cube Space with p = 0.5 and N = 200, 500, 1000 (left to
right), data averaged from 500 runs. Error bars show standard error of mea-
surement. Discrepancy between data and formula does not change when N is
increased.

Because increasingN had little effect on the quality of the prediction for complete graphs,
it can be expected that above results remain the same for larger combinations Np. As
an example figure 6.6 (and figure A.15 for Minkowski Space) shows three distributions
with increasing N and p = 0.5 in three dimensions. Evidently the discrepancy between
prediction and real data is the same regardless of the choice of N when p and D are held
constant.
The key finding of this section is that in incomplete graphs the number of long paths
is still overestimated by equations (3.25) and (3.26). In addition the number of short
paths is underestimated. As for complete graphs increasing Np makes little difference,
but contrary to before increasing the dimension D does not bring data and formulae to
better agreement.
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7. Empiric Formulae

With the combined results from chapters 5 and 6 it should be possible to modify equa-
tions (3.25) and (3.26) to give better estimates for the actual path length distributions.
The following is in no way intended to result in an accurate description of the distri-
butions, only to show how one could improve equations (3.25) and (3.26). To find a
quantitatively accurate formula obviously goes beyond the scope of this work.
To do the latter, it might not be the best approach to modify the existing formulae, but
rather to use a polynomial with a high enough order. Then one could fit the polynomial
to a large number of data sets until the behaviour of the coefficients in N , p and D
emerges. The following is only one of many possible methods.

7.1. Cube Space

The two most striking observations made in chapters 5 and 6 were that for complete
graphs longer paths were being overestimated and that for incomplete graphs shorter
paths were also being underestimated. But because the distributions always have more
or less the same shape, it should be possible to get a better estimate by just rescaling
the axes and by moving the prediction curve appropriately. Remember the proposed
formula for the distribution in Cube Space is equation (3.25), which was:

Cn(x) =

(
pN(x)

)n−1(
Γ(n)

)D (7.1)

Now to rescale the horizontal axis it is necessary to replace (n − 1) → α (n − 1), while
vertical scaling can be done by multiplying Cn(x) with a factor β. To displace the curve
to the left just add γ to (n− 1). Hence the ansatz for this problem was:

Cn(x) =

(
pN(x)

)α(n−1)+γ[
Γ
(
α(n− 1) + γ + 1

)]D · β (7.2)

α, β, γ are of course not just constants but functions of possibly all three parameters
N , p and D. With some trial and error it was possible to roughly incorporate these
dependencies and the following expressions were found to give reasonable results:

α = 1 +
0.2

D2
(7.3)

β = 1− 0.4p

D2
(7.4)

γ =
2

3
(1− p) (7.5)

39



EMPIRIC FORMULAE 7.2. MINKOWSKI SPACE

The quality of the match in each case was only assessed by eye, so it should be easy to
get more accurate expressions with a little more time. Some examples comparing data
with the modified prediction are given in figure 7.1a. Obviously the predictions can still
not be considered good, but they are better than the original ones, which was the only
objective.

7.2. Minkowski Space

The approach was the same as for the Cube Space, so the ansatz formula for Minkowski
Space was:

Cn(x) =

(
pN(x) Γ(D + 1)

2

)α(n−1)+γ

Γ(D/2)

·
[
Γ

(
D

2

(
α(n− 1) + γ

)
+ 1

)
Γ

(
D

2

(
α(n− 1) + γ + 1

))]−1

(7.6)

Again with some trial and error the following could be found:

α = 1 +
0.8p

D3
(7.7)

β = 1− 0.1p

D2
(7.8)

γ =
2

3
(1− p) (7.9)

Some examplary distributions are shown in figure 7.1b.

It should be noted that a good fit in the centre of the distribution is of highest im-
portance, because the numbers of paths are orders higher than on the wings. Quite
obviously there is little physical meaning in the way the parameters are presented and
the influence of p and D was only determined by eye, as mentioned before. On a final
note, there is no reason to assume that the new formulae give better results for every
configuration, but especially for small p they seem to do a much better job. What they
do show is that the selected approach can be used to emprirically improve the existing
formulae.
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Figure 7.1.: Comparison of a selection of path length distributions with original
formula (dotted) and new formula (dashed), data averaged from 500 runs. Error
bars show standard error of measurement. Modified formulae still don’t give a
good prediction, but a better one than the original.
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8. Summary & Outlook

The objective of this work was to answer how many paths of any length n are present
in a random discrete interval of N points in D-dimensional ordered Cube Space and
Minkowski Space, where D ≥ 2. Particular attention was paid to the longest path. The
order of Cube Space was that a point can only connect to another, if the latter has a
smaller component in all dimensions. The order of Minkowski Space was that a point
can only connect to points earlier in time that also lie within its lightcone. Both resulted
in a Directed Acyclic Graph (DAG).
A distinction was made between two cases. One where all possible connections are
present – a complete interval – and the other where every possible edge is only present
with a probability p < 1 – an incomplete interval.

For complete graphs analytic formulae exist, which were derived in a mean field ap-
proximation, meaning that they assume a constant point density ρ = N/V rather than
discrete points. It was investigated how well simulation data is predicted by these formu-
lae. In the next step the dependence of the longest path L on N and D was probed and
finally the relation between greedy path and longest path was examined. The following
could be found:

1. It is sufficient to take the average of circa 500 runs to see a signifcant deviation
of the data from the formulae. Averaging more runs made errors smaller, but did
not change the measured path length distribution. This was incorporated in the
rest of the experiments.

2. The prediction of the formulae is very accurate for short paths, but becomes in-
creasingly inaccurate for longer paths. The formulae significantly overestimate the
occurence of long paths, where long paths means roughly the longer half of the
distribution.

3. The previous finding was qualitatively the same for all testedN . While it was found
that with higher N prediction and data matched slightly better, this behaviour was
expected to be expressed much strongly. It can only be seen as an indication that
for N → ∞ data and prediction will be in agreement. More rigorous testing with
higher N is necessary to fully confirm this.

4. The prediction becomes more accurate in higher dimensions. Because for a given
N a higher dimensions results in fewer and shorter paths, it could just be that
the formulae always predict the number of short paths well in absolute terms
rather than relative to the whole distribution. However, it is more likely that the
formulae perform poorly in low dimensions (D = 2, 3) and give better results in
higher dimensions, which is supported by later findings.
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5. The longest path length L is a linear function of the scale length Lscale = N1/D,
with the limitation that the slope also depends on the dimension. It increases with
D, but appears to become constant from around D = 5, which supports the notion
of the previous point. The measured slopes for D = 5 were cCu = 2.382± 0.007 in
Cube Space and cMi = 2.098± 0.007 in Minkowski Space

6. Upper and lower bounds on the slope derived for the limit N → ∞ [4] were found
to be valid in the tested regime Lscale ≤ 50.

7. The ratio of greedy path length to longest path length G/L appears to approach
a constant value for large N that depends on the dimension. Again this D depen-
dence became insignificant for D ≥ 5, where the constant is roughly 0.75 for both
Cube Space and Minkowski Space.

There is no analytic derivation of formulae for incomplete intervals. However, it was
conjectured that it should be sufficient to replace N with Np in the existing formulae.
It was investigated if the choice of N and p is irrelevant for a given product Np. It was
further tested if L′

scale = (Np)1/D also serves as a scale length. Again the quality of the
prediction of the modified formulae was examined:

1. It is possible to normalise the formulae in a way that for a given Np all choices
of N , p and D result in approximately the same straight line with slope log(Np),
when the normalised distribution is displayed as logarithm. This indicates that
indeed only Np is an independent variable, not N and p separately.

2. L is a linear function of L′
scale = (Np)1/D. Except for D = 2 the slope is roughly

constant for all dimensions with cCu = 2.333 ± 0.035 in Cube Space and cMi =
2.177 ± 0.034 in Minkowski Space, values very similar to the ones obtained for
complete intervals. Consequently it can be said that L′

scale serves as a scale length
for incomplete intervals.

3. The modified formulae continue to overestimate the occurence of long paths, but
additionally underestimate the number of short paths.

4. Np seems to define the path length distribution, with only a small dependence on
N and p separately.

5. Increasing Np is again with little effect, the measured distribution deviates from
the prediction in the same manner for all tested Np.

6. The prediction does not become better in higher dimensions. It appears to be
about the same for all tested dimensions in terms of order of magnitude.

The findings relating measured path length distributions and prediction were used to
modify the existing formulae. It should be noted again that this was only done to
highlight one possible approach to empirically improving predictions and is not meant
as a serious attempt. It was found that even though data and formula were often in
poor agreement, the distributions had a similar shape. So to find a more accurate
expression the approach was to rescale the axes and to displace the curve. This meant
replacing (n− 1) → α(n− 1) + γ and Cn → βCn in the formulae. It was found that the
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following coefficients resulted in a better – but still not good – prediction of path length
distributions:

Cube Space: α = 1 +
0.2

D2

β = 1− 0.4p

D2

γ =
2

3
(1− p)

Minkowski Space: α = 1 +
0.8p

D3

β = 1− 0.1p

D2

γ =
2

3
(1− p)

Some of the findings, specifically the linearity of L as a function of Lscale and the con-
stant ratio of G and L for large N , could prove useful to predict or estimate the longest
path or even the path length distribution for very large directed acyclic networks without
the need to perform lengthy computational analyses. On the other hand, there are still
numerous open ends to this work.
All the simulations were performed for relatively small N because of limited computing
power. Verifying the claims for larger N is no doubt necessary for every section of this
work. Especially the behaviour of L for larger Lscale in higher dimensions should be
interesting. With a more powerful computer or simply more time it should be an overall
easy task.
Somewhat more demanding would be to find an empirical formula that gives accurate
predictions for both complete and incomplete graphs. This work only highlighted one
possible approach that could prove adequate while there are no doubt numerous others.
All of them have in common that they will require a very large data set. Approaches
using a different ansatz than the one from this work will face an additional challenge
in that they will have to guess an appropriate shape – for example the order of the
polynomial – as a first error source and will then have to find the right expression to
describe the behaviour of all coefficients in N , p and D – another error source.
It should also be interesting to see what other characteristics of a network can be ex-
tracted from the path length distribution, such as the average shortest path, clustering,
average degree or the degree distribution. If that’s possible an accurate prediction be-
comes even more valuable and the path length distribution could become a relevant tool
of network analysis.
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A. Appendix

A.1. Derivation of the Corrective Term for

L(Lscale) in Cube Space

The aim is to find a solution L for equation (3.9), which was

L ln(L)− L− 1

2
ln

(
L

2π

)
+O(L−1) ≈ (L− 1) ln(Lscale) (A.1)

and the ansatz is L = eLscale+ f , where f is the corrective term that needs to be found.
Neglect terms of order O(L−1) and lower, so that with left hand side and right hand
side switched:

(eLscale + f − 1) ln(Lscale) ≈
(
eLscale + f − 1

2

)
ln(eLscale + f)− eLscale − f +

1

2
ln(2π)

(A.2)

≈
(
eLscale + f − 1

2

)(
1 + ln(Lscale) + ln

(
1 +

f

eLscale

))
− eLscale − f +

1

2
ln(2π) (A.3)

−1
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)(
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− eLscale − f +
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2
ln(2π) (A.4)

≈
(
eLscale + f − 1

2
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(
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+

1

2
ln(2π)− 1
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(A.5)

−1

2
ln

(
2πLscale

e
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2
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)
(A.6)

Assume now that f is sufficiently small compared to eLscale so one can write

ln

(
1 +

f

eLscale

)
≈ f

eLscale
(A.7)

which, neglecting terms of order O(f2), yields

− 1

2
ln

(
2πLscale

e

)
≈ f − f

2eLscale
(A.8)

Hence:

f ≈ −
eLscale ln

(
2πLscale

e

)
2eLscale − 1

≈ −1

2
ln

(
2πLscale

e

)
(A.9)

the last step being valid if eLscale is much larger than 1.
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APPENDIX A.2. ADDITIONAL FIGURES

A.2. Additional Figures
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Figure A.1.: Path length distribution predicted by equation (3.19) (dotted) and
actual data in Minkowski Space with N = 100, D = 2, 1000 runs averaged on
a log scale. Error bars show standard error of measurement. The occurence of
long paths and the total number of paths is overestimated by the formula.
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Figure A.2.: Path length distribution predicted by equation (3.19) (dotted) and
actual data in Minkowski Space with N = 100, D = 2 on a log scale. Error
bars are omitted for better readability. Increasing the number of repititions
from 1000 to 100000 does not significantly change the measured path length
distribution.
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Figure A.3.: Effect of increasing N comparing prediction from equation (3.19)
(dotted) and simulation data in Minkowski Space with D = 2 from 500 repiti-
tions. Error bars show standard error of measurement. Increase of N (left to
right) does not seem to bring prediction and data closer together.
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Figure A.4.: Ratio of measured distributions to predicted distributions for N =
500, 1000, 2000 (left to right) in D = 2 Minkowski Space. Data is the same as
in figure 5.3 and should ideally follow straight dotted line. Higher N seem to
be match unity ratio a little better.
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(a) D = 3
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(b) D = 4

Figure A.5.: Reproduction of figure A.3 with D = 3 and D = 4 instead of
D = 2. Evidently in higher dimensions predicted values (dotted) match data
more closely.
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(a) Cube Space

(b) Minkowski Space

Figure A.6.: Longest path length L as a function of Lscale in Cube Space and
Minkowski Space, data points from 500 run average. Error bars smaller than
symbols. L shows linear behaviour with slope c given in legend. Points should
ideally be on one curve, but there’s clearly a dimension dependence. Closeup
view of low Lscale area of figures 5.6a and 5.6b.
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(b) Minkowski Space

Figure A.7.: Greedy path length G as a function of Lscale in Cube Space and
Minkowski Space, data points from 500 run average. Error bars smaller than
symbols. G shows linear behaviour with slope c given in legend. Behaviour
almost identical to L, but with smaller slope. Closeup view of low Lscale area
of figures 5.7a and 5.7b.
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Figure A.8.: Ratio of greedy path length G to longest path length L as a
function of Lscale. Data from 500 averaged runs. Error bars show standard error
of measurement. Most data points for too small Lscale to see any significant
behaviour with the exception of D = 2.
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Figure A.9.: Plot of log(Cn(x)) + norm = (n− 1) log(Np) in Minkowski Space,
data from 1000 run average. 9 different distributions for each Np with D ∈
{2, 3, 4}, p ∈ {1.0, 0.5, 0.1} and N = Np/p. Error bars omitted for better
readability. Data collapse indicates that only the product Np is an independent
variable.

Figure A.10.: Longest Path L as a function of D for different pairs of N ,p with
Np = 100 in Minkowski Space, data averaged over 500 runs. Error bars show
standard error of measurement. Fit function c · (Np)1/D with c,Np variables.
Fit does not return Np = 100.
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(a) Full view

(b) Close-up for small L′
scale.

Figure A.11.: L as a function of the modified scale length L′
scale = (Np)1/D in

Minkowski Space, data averaged over 100 runs. Error bars show standard error
of measurement. Linear fit results given for each set, but line is not displayed.
L exhibits linear behaviour with small dependence on p, but roughly constant
slope except for D = 2.
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Figure A.12.: Closeup view of figure 6.3: L as a function of the modified scale
length L′

scale = (Np)1/D, data averaged over 100 runs. Error bars show standard
error of measurement. Linear fit results given for each set, but line is not
displayed. L exhibits linear behaviour with small dependence on p, but roughly
constant slope except for D = 2.
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Figure A.13.: Path Length Distributions in two-dimensional Minkowski Space
with Np = 100, data averaged over 500 runs. Error bars show standard error of
measurement. For p < 1 equation (3.26) underestimates number of short paths,
but overestimates number of long paths, as seen for p = 1. The total number
of paths appears to increase slightly with N .

58



APPENDIX A.2. ADDITIONAL FIGURES

lo
g(

C
n)

Path Length n

(a) D = 3
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(b) D = 4

Figure A.14.: Reproduction of figure A.13 withD = 3, 4, data averaged over 500
runs. Error bars show standard error of measurement. For p < 1 equation (3.26)
underestimates number of short paths, but overestimates number of long paths,
as seen for p = 1. The total number of paths appears to increase slightly with
N .
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Figure A.15.: Comparison of measured and predicted (dotted) distributions
in three-dimensional Minkowski Space with p = 0.5 and N = 200, 500, 100,
data averaged from 500 runs. Error bars show standard error of measurement.
Discrepancy between data and formula does not change when N is increased.
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