Effective User Guidance in

Online Interactive Semantic Segmentation

Jens Petersen, Martin Bendszus, Jürgen Debus, Sabine Heiland, Klaus H. Maier-Hein German Cancer Research Center (DKFZ) & Heidelberg University Hospital 16th February 2017

> GERMAN CANCER RESEARCH CENT IN THE HELMHOLTZ ASSOCIATI Research for a Life without Cancer

Why Interactive Segmentation?

Types of Interactive Segmentation

- Contours
 - Intelligent Scissors / Live-wire / Snakes

- Seeded methods
 - Growing from seed point / region
 - Shrinking from bounding box

- Classifier-based
 - Predict pixels/superpixels
 - Good for multi-class problems \rightarrow Glioblastoma MRI
 - Class probabilities

Guiding Question

What types of user interactions yield the best results with as little effort as possible?

Types of Interactive Segmentation

- Contours
 - Intelligent Scissors / Live-wire / Snakes

- Seeded methods
 - Growing from seed point / region
 - Shrinking from bounding box

- Classifier-based → Random Forest
 - Good for multi-class problems
 - Class probabilities \rightarrow **Uncertainty**

(Probability Entropy)

Simulated User Interactions

• UNCERTAIN

Annotate where classifier uncertainty is highest

MISCLASS

Randomly correct classifier

MISCLASS-B

Randomly correct classifier, balancing inputs across classes

UNCERTAIN-MB

Randomly correct classifier where it is most uncertain, balancing classes

• CERTAIN-MB

Randomly correct classifier where it is most certain, balancing classes

Details

Data

- BraTS 2013
- T1n, T1c, T2, FLAIR, T1c T1
- 20 high grade glioma patients
- N3 bias-field correction (not FLAIR)
- Histogram matching
- Normalization by CSF mean

Image Features

- Gaussian Smoothing
- Gaussian Gradient Magnitude
- Laplacian of Gaussian
- Hessian of Gaussian Eigenvalues
- Structure Tensor Eigenvalues

Random Forest

- 50 trees
- 10 maximum depth
- Gini impurity splits

Evaluation

- 5 runs per patient
- Dice coefficient
- Wilcoxon signed-rank test
- Base significance threshold p < 0.05
- Bonferroni correction p < 0.001

Classifier error more important than classifier uncertainty

Classifier error more important than classifier uncertainty

Classifier error more important than classifier uncertainty

Balance inputs if class imbalance is large

Summary & Discussion

- Better to annotate where classifier is wrong than where it is uncertain
- Balance inputs across classes
- No added value when combining corrections with uncertainty information
- Assumes user knows groundtruth
- Not Bayesian uncertainty

Thank you for your attention!

