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Data Shortage

Transfer learning

Noisy labels and data

Challenges in MIC
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Basic Principle of Generative Models

Assumption
Observations X generated from latent
variables Z via mapping f
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Basic Principle of Generative Models

Assumption
Observations X generated from latent
variables Z via mapping f

Goal
• Be able to generate more samples that

follow distribution of X
• Z interpretable in some way

Z

X

f(x|z)
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Basic Principle of Deep Generative Models
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Basic Principle of Deep Generative Models
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Generative Adversarial
Networks
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[https://twitter.com/goodfellow_ian]
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Basic GAN Layout

[https://deeplearning4j.org/generative-adversarial-network]
[1] Generative Adversarial Networks, Goodfellow et al., 2014, NIPS
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GAN Learning Objective
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D(real) → 1 D(fake) → 0

GAN Learning Objective



13

11.3.2018   l   Deep Generative Models   l   Jens Petersen, Div. of Medical Image Computing

D(real) → 1 D(fake) → 0

D(fake) → 1

GAN Learning Objective
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Trying• to find saddle point
→ Very hard to optimize
Lot • of work on different objectives and „tricks“ for training

D(real) → 1 D(fake) → 0

D(fake) → 1

[2] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Radford et al., 2015, arXiv:1511.06434

[3] Are GANs Created Equal? A Large Scale Study, Lucic et al., 2017, arXiv:1711.10337

GAN Learning Objective
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Original Examples
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Important Concepts Conditional GAN

General case
Generative models make no default assumptions for p(z)

→ Could be random noise and/or real data
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Important Concepts Conditional GAN

[4] Adversarial Networks for the Detection of Aggressive Prostate Cancer, Kohl et al., 2017, NIPS Workshop
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Important Concepts Conditional GAN

[4] Adversarial Networks for the Detection of Aggressive Prostate Cancer, Kohl et al., 2017, NIPS Workshop
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Important Concepts CycleGAN

Assumption
Have two unpaired sets A,B of images with some set-
specific characteristic (e.g. photos & paintings)

Goal
Be able to transform image so it looks like images in 
different set
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Important Concepts CycleGAN

Assumption
Have two unpaired sets A,B of images with some set-
specific characteristic (e.g. photos & paintings)

Goal
Be able to transform image so it looks like images in 
different set

Naive Approach
GANs that take images from A(B) and create images that
similar to others from B(A)
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Important Concepts CycleGAN

Assumption
Have two unpaired sets A,B of images with some set-
specific characteristic (e.g. photos & paintings)

Goal
Be able to transform image so it looks like images in 
different set

Naive Approach
GANs that take images from A(B) and create images that
similar to others from B(A)
→ no guarantee that output looks similar to input
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Important Concepts CycleGAN

[5] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Zhu et al., 2017,    
arXiv:1703.10593
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Important Concepts CycleGAN

L1-Norm
Cycle consistency loss

[5] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Zhu et al., 2017,    
arXiv:1703.10593
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Important Concepts CycleGAN

[5] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, Zhu et al., 2017,    
arXiv:1703.10593
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Examples Progressive Growing
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Examples Progressive Growing
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Examples Progressive Growing
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Examples Progressive Growing

Samples

Nearest Neighbours
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• Pixel similarity
• mean squared error (= L2 norm)
• other norms

Image Similarity
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• Pixel similarity
• mean squared error (= L2 norm)
• other norms

• Semantic similarity
• Inception score (score for entire model)
• Combined distance of multiple feature layers in discriminator
• Human evaluation (e.g. Mechanical Turk)

Image Similarity
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Examples MRI to CT Image Synthesis
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Examples MRI to CT Image Synthesis

FCN architecture
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Examples MRI to CT Image Synthesis

Combined adversarial & MSE loss

FCN architecture
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Examples MRI to CT Image Synthesis
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Examples Domain Transfer for Lesion Segmentation
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Examples Domain Transfer for Lesion Segmentation

Assumption
(X, Y) in source domain, (X*) in target domain
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Examples Domain Transfer for Lesion Segmentation

Assumption
(X, Y) in source domain, (X*) in target domain
... + GE + Lesion Segmentation in source
... + SWI in target

Goal
Segmentation in target domain
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Examples Domain Transfer for Lesion Segmentation
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Examples Domain Transfer for Lesion Segmentation

DeepMedic architecture
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Examples Domain Transfer for Lesion Segmentation

DeepMedic architecture

Auxiliary adversarial loss
ensures domain invariant feature maps
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Examples Domain Transfer for Lesion Segmentation

Higher is better
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Summary GANs

✔ High-quality, high-resolution outputs possible

✔ Adversarial training extremely versatile

✖ Difficult to train

✖ No inference (latent representation from data)



Variational
Autoencoders
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Probabilistic Perspective

Z

X

pΦ(x|z)qθ(z|x)

p(z)

[6] Auto-encoding variational Bayes, Kingma & Welling, 2014, ICLR
[7] Stochastic backpropagation and approximate inference in deep generative models, Rezende et al.,
2014, ICML
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Probabilistic Perspective

Z

X

pΦ(x|z)qθ(z|x)

p(z)

[6] Auto-encoding variational Bayes, Kingma & Welling, 2014, ICLR
[7] Stochastic backpropagation and approximate inference in deep generative models, Rezende et al.,
2014, ICML

map to
distribution parameters
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It looks like an autoencoder

[http://kvfrans.com/variational-autoencoders-explained/]
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Reparametrization Trick

!~ℱ !; % & = ((!) +&
+% =

+(
+!
+!
+%



48

11.3.2018   l   Deep Generative Models   l   Jens Petersen, Div. of Medical Image Computing

Reparametrization Trick
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Reparametrization Trick
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VAE Learning Objective
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VAE Learning Objective

Maximize reconstruction fidelity (e.g. MSE)

Make encodings conform to prior
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Original Examples
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Example Corrupted Data
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Example Corrupted Data
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Example Combining GANs & VAEs
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Example Combining GANs & VAEs
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Example Combining GANs & VAEs
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Example Combining GANs & VAEs

l-th layer discriminator
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Example Combining GANs & VAEs

l-th layer discriminator
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Example Combining GANs & VAEs
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Example Combining GANs & VAEs
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GANs • designed to generate new data
VAEs• designed to find interpretable latent representation

Notes on VAEs
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• GANs designed to generate new data
• VAEs designed to find interpretable latent representation

• can go from data to latent representation
• good for uncertainty estimation
• latent representation tends to focus on most important features

Notes on VAEs
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GANs • designed to generate new data
VAEs• designed to find interpretable latent representation

can• go from data to latent representation
good• for uncertainty estimation
latent• representation tends to focus on most important features

Hard• to produce high quality outputs
Need • better image similarity measure than MSE
Combination• with GANs promising

Notes on VAEs
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Literature• overview GANs
https://github.com/nightrome/really-awesome-gan
Literature• overview GANs for MIC
https://github.com/xinario/awesome-gan-for-medical-imaging
VAE Tutorial (• Doersch)
https://arxiv.org/abs/1606.05908
PyTorch• DCGAN
https://github.com/pytorch/examples/tree/master/dcgan
PyTorch• VAE
https://github.com/pytorch/examples/tree/master/vae
Improving• VAE outputs
(Autoregressive flow) https://arxiv.org/abs/1606.04934
(Normalizing flows) https://arxiv.org/abs/1505.05770
Combining• GANs and VAEs
(Adversarial Autoencoder) https://arxiv.org/abs/1511.05644
(Variational GAN) https://arxiv.org/abs/1706.04987
Related• generative models
(NICE) https://arxiv.org/abs/1410.8516
(Real NVP) https://arxiv.org/abs/1605.08803

Further Reading


